Free Web Hosting Provider - Web Hosting - E-commerce - High Speed Internet - Free Web Page
Search the Web

Teoria de numeros
Principal Arriba Sumador Completo Teoria de numeros Grafos Directorios recursivos Metodos Combinatorios Grafos y arboles

 

Arriba

Teoría elemental de números

 

Tema 1 : NUMEROS ENTEROS

 

 

La Teoría de Números es la parte de la Matemática que trata de los números enteros y sus propiedades. Estudia la divisibilidad y la congruencia de números enteros, los números primos y su distribución, las operaciones algebraicas entre ellos y las soluciones enteras de ecuaciones diofánticas. Se designará a los conjuntos de números naturales y enteros por N y Z respectivamente.

 

N = {1, 2, 3, 4, 5, ...}

Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...}

 

El número 0 no es un número natural. El conjunto de los números enteros no negativos se designa por N U {0}. Uno de los principios más importantes en la Teoría de Números es:

 

Principio de la buena ordenación: todo subconjunto no vacío de números enteros no negativos tiene un primer elemento, es decir, tiene un elemento que es menor que todos los demás.

 

Operaciones con números enteros

 

Sean a y b dos números enteros. A partir de las operaciones suma (a + b) y producto (a . b), es fácil definir las siguientes operaciones:

 

Diferencia (d = a - b): otro entero que satisfaga la igualdad a = b + d.

Divide a (a | b): si a # 0 y b = a . q, diremos que a divide a b, a es un divisor de b, a es un factor de b, o que b es un múltiplo de a.

Mayor que (b > a): si existe un número natural n tal que b = a + n.

 

Propiedades de los números enteros

 

Sean a, b, c, x e y números enteros:

 

a . 0 = 0

a . (-b) = -a . b

Si a # 0 y a . b = a . c, entonces b = c

Si a # 0 y a | b, entonces a | b . x

Sean a # 0 y b # 0, si a | b y b | c, entonces a | c

Sea a # 0, si a | b y a | c, entonces a | (b . x + c . y)

Sean a y b positivos, si a | b, entonces a <= b

Sean a # 0 y b # 0, si a | b y b | a, entonces a = b o a = -b

 

Valor absoluto

 

Llamaremos valor absoluto a la aplicación | | : Z -> Z, tal que todo número entero tiene imagen mediante | | y esta imagen es única. Queda definida por:

 

Si n >= 0, entonces |n| = n

Si n < 0, entonces |n| = -n

 

Propiedades del valor absoluto

 

|n| pertenece a N U {0}

|n| = 0 si y sólo si n = 0

|a . b| = |a| . |b|

|a + b| <= |a| + |b|

Si a # 0, b # 0 y a | b, entonces |a| <= |b|

 

Algoritmo de la División

 

Sean a entero y b natural. Entonces existen números enteros q y r tales que:

 

a = b . q + r

 

con 0 <= r < |b|. Además q y r son únicos. A los números a, b, q y r se les llama respectivamente dividendo, divisor, cociente y resto.

 

Módulo

 

Sean a y b números enteros con b # 0. Sea a = b . q + r donde 0 <= r < |b|. Definimos el operador módulo MOD por:

 

a MOD b = r

 

Propiedades del operador MOD

 

Sean a, b, c, d y m números enteros con m # 0. Si a MOD m = c MOD m y b MOD m = d MOD m, entonces:

 

(a + b) MOD m = (c + d) MOD m

(a . b) MOD m = (c . d) MOD m

 

Máximo común divisor

 

Sean a y b enteros. Un entero d # 0 es un divisor común de a y b si d | a y d | b. Un divisor común de a y b se llama máximo común divisor de a y b si d > 0 y cada común divisor de a y b divide también a d. Se designa por:

 

m.c.d.(a, b) = d

 

Algoritmo de Euclides

 

El Algoritmo de Euclides se basa en sucesivas divisiones de dos números hasta obtener su máximo común divisor. Es decir, si m.c.d.(a, b) = d y a = b . q + r, entonces tendremos:

 

d = rn-1 = m.c.d.(rn-2, rn-1) = m.c.d.(rn-3, rn-2) = ... = m.c.d.(b, r1) = m.c.d.(a, b)

 

Si hacemos la divisiones sucesivas partiendo del Algoritmo de la División original:

 

a = b . q1 + r1

b = r1 . q2 + r2

r1 = r2 . q3 + r3

...

rn-4 = rn-3 . qn-2 + rn-2

rn-3 = rn-2 . qn-1 + rn-1

rn-2 = rn-1 . qn + 0

 

[ Cálculo del máximo común divisor de dos números mediante el Algoritmo de Euclides ]

 

 

Tema 2 : NUMEROS PRIMOS

 

 

Dado un número entero p > 1, diremos que p es un número primo si 1 y p son los únicos divisores positivos de p. Un entero a > 1 que no es primo le denominaremos número compuesto. Dos números, a y b, son primos entre sí, si se tiene que m.c.d.(a, b) = 1.

 

Lema de Euclides

 

Sean a, b y c números enteros. Supongamos que a y c son primos entre sí y que c | a . b. Entonces c | b.

 

Teorema Fundamental de la Aritmética

 

Sea n un número mayor que 1. Entonces existen números primos p1, ... , pr tales que:

 

n = p1 . p2 . ... . pr

 

donde p1 <= p2 <= ... <= pr.

 

Teoremas

 

Sea p un entero mayor que 1 y primo. Para cualquier a y b enteros, si p | a . b entonces p | a o p | b.

El número de primos es infinito.

Si pn es el n-ésimo número primo entonces pn <= 22^n-1.

Sea a un entero mayor que 1, entonces si para todo número primo p menor o igual que la raíz de a, p no divide al número a, se verifica que a es primo.

 

Mínimo común múltiplo

 

Sean a y b dos números enteros. Llamaremos mínimo común múltiplo de a y b al menor entero positivo que sea múltiplo de ambos. Lo designaremos por m.c.m.(a, b). Sean a y b enteros no nulos, entonces:

 

|a . b| = [ m.c.d.(a, b) ] . [ m.c.m.(a, b) ]

 

[ Calcular los valores de dos incógnitas para que se cumpla d = a . x + b . y ]

[ Comprobar que un número es primo utilizando la criba de Erastóstenes ]

 

 

Tema 3 : EL PRINCIPIO DE INDUCCION

 

 

En las Matemáticas aparecen muchos problemas que tienen la siguiente forma general:

 

Sea P(n) una determinada propiedad acerca de un número natural n.

Se trata de probar que P(n) es verdadero para todo n que sea natural.

 

Teorema del Principio de Inducción

 

Sea S un conjunto de números naturales que satisface las dos condiciones siguientes:

 

El número 1 pertenece a S.

Para cada número k >= 1, si k pertenece a S entonces k + 1 también pertenece a S.

 

Entonces el conjunto S es igual a N. Pasos a seguir:

 

Definir el conjunto S = { n pertenecientes a N tales que P(n) es verdadera }.

Probar que 1 pertenece a S.

Suponer que k pertenece a S para k >= 1 arbitrario.

Demostrar entonces que k + 1 pertenece a S.

 

Principio Fuerte de Inducción

 

Sea S un conjunto de enteros positivos tales que:

 

1 pertenece a S.

Para cada entero n > 1, si k pertenece a S para todo entero k tal que 1 <= k < n entonces n pertenece a S.

 

Entonces S = N.

 

[ Demostrar una propiedad por el Principio de Inducción ]

 

 

Tema 4 : ECUACIONES DIOFANTICAS

 

 

Ecuaciones lineales de dos variables enteras

 

Sean a, b y n números enteros. La ecuación lineal a . x + b . y = n tiene solución entera x0 e y0 si y sólo si d = m.c.d.(a, b) divide a n. Dada la ecuación a . x + b . y = n se calcula el m.c.d.(a, b) llegando a escribir d = a . q1 + b . q2 (a = b . q1 + r1 y b = r1 . q2 + r2), siendo una solución x0 = n . q1 / d e y0 = n . q2 / d. Supongamos que a, b y n son enteros no nulos y d = m.c.d.(a, b) divide a n. Entonces la solución general de la ecuación a . x + b . y = n tiene la forma: { x0 + t . b / d , y0 - t . a / d } donde t es cualquier entero.

 

Ecuaciones cuadráticas

 

La ecuación diofántica x2 - y2 = n con n > 0, tiene solución si y sólo si n se puede factorizar como producto de dos números de la misma paridad, es decir, ambos pares o ambos impares. Si existen, las soluciones de esta ecuación tienen la forma:

 

x = a + b / 2

y = a - b / 2

 

donde x + y = a y x - y = b.

 

Algoritmo de factorización de Fermat

 

Determinar el mínimo entero positivo q que satisfaga que q2 >= n.

Estudiar si alguno de los números q2 - n, (q + 1)2 - n, (q + 2)2 - n, ... es un cuadrado.

Si para alguno de estos números m, m2 - n es un cuadrado, entonces n será primo.

 

Ecuaciones pitagóricas

 

Las soluciones de la ecuación pitagórica x2 + y2 = z2 que satisfacen las condiciones m.c.d.(x, y, z) = 1, 2 | x y x, y, z > 0, vienen dadas por las fórmulas x = 2 . s . t, y = s2 - t2, z = s2 + t2, para naturales s, t con s > t tales que m.c.d.(s, t) = 1 y s y t tienen distinta paridad.

 

[ Hallar todas las soluciones de ecuaciones diofánticas a . x + b . y = n ]

[ Estudiar si un número es primo mediante el Algoritmo de factorización de Fermat ]

[ Hallar todas las soluciones de ecuaciones de la forma x2 - y2 = n ]

 

 

Tema 5 : CONGRUENCIAS

 

 

Sea m > 0. Dados a y b enteros se dice que a y b son congruentes módulo m si a - b es divisible por m. Simbólicamente esta relación se escribe:

 

a = b mód (m)

 

si y sólo si m | (a - b). Fijado m > 0, cada número entero a es congruente con uno de los enteros 0, 1, 2, ... , m - 1. Entonces a = r mód (m), el número r se denomina menor resíduo no negativo de a módulo m, que no es otra cosa que a MOD m = r.

 

Teoremas

 

Sean a, b, c, d, h y m enteros con h # 0 y m > 0 entonces:

 

a = b mód (m) si y sólo si al dividir a y b por m el resto obtenido es el mismo

a = a mód (m)

Si a = b mód (m) entonces b = a mód (m)

Si a = b mód (m) y b = c mód (m) entonces a = c mód (m)

Si a = b mód (m) y c = d mód (m) entonces a + c = b + d mód (m) y a . c = b . d mód (m)

Si a = b mód (m) entonces h . a = h . b mód (m)

Si h | a, h | b, m.c.d.(h, m) = 1 y a = b mód (m) entonces a / h = b / h mód (m)

 

Ecuación de la forma ax = b mód (m)

 

La ecuación ax = b mód (m) tiene solución si y sólo si d divide a b donde d es el m.c.d.(a, m). Además el número de soluciones no congruentes módulo m es exactamente d.

 

Teorema chino del resto

 

El sistema de congruencias aix = bi mód (mi), i = 1, 2, ..., k donde m.c.d.(mi, mj) = 1 si i # j y m.c.d.(ai, mi) = 1 para 1 <= i <= k, tiene una única solución x0 módulo m1m2...mk y las demás soluciones son de la forma x = x0 + zm1m2...mk, donde z es un entero.

 

Pequeño Teorema de Fermat

 

Si p es un número primo que no divide al número a entonces ap-1 = 1 mód (p).

 

Teorema de Wilson

 

Si p es un número primo entonces (p - 1)! = -1 mód (p).

 

[ Resolver una congruencia del tipo ax = b mód (m) ]

[ Resolver un sistema de congruencias y presentar la ecuación general ]

[ Hallar el resto de dividir una potencia entre un número por el pequeño Teorema de Fermat ]

 

 

Tema 6 : SISTEMAS DE NUMERACION

 

 

En la vida diaria el sistema de numeración empleado para escribir números naturales es el decimal. Las unidades se agrupan de 10 en 10 para unidades de segundo orden, que se llaman decenas. Estas, a su vez, se agrupan de 10 en 10 para formar unidades de tercer orden o centenas y así sucesivamente. Sea b >= 2 un número natural (llamado base). Entonces todo número natural n puede escribirse de manera única en base b de la forma:

 

n = ak . bk + ak-1 . bk-1 + ... + a1 . b + a0

 

De ahora en adelante cuando tengamos un número en base b, escribimos simplemente:

 

n = ( ak ak-1 ... a1 a0 )b

 

Cuando la base es mayor que 10, se necesitan nuevos símbolos. Usualmente se utilizan las letras del alfabeto. Así A = 10, B = 11, etc.

 

Criterio de divisibilidad por k

 

Un número n es divisible por k si y sólo si:

 

å i [ 0 ... t ] en ai . ri = 0 mód (k)

 

siendo t el último dígito del número n.

 

[ Resolver una ecuación mediante cambio de base y efectuar una suma ]

 

 

PROBLEMAS

 

Cálculo del máximo común divisor de dos números mediante el Algoritmo de Euclides de la división

 

Se procede con la división de tal forma que cumpla a = b . q + r donde q = a DIV b y r = a MOD b. A continuación, si el resto es distinto de cero, se toma en la siguiente división: a = b y b = r, es decir, el divisor y el resto de la división anterior. Cuando se llegue a una expresión con el resto igual a cero, el término b será el máximo común divisor.

 

m.c.d.(1312, 800) = d

1312 = 800 . 1 + 512

800 = 512 . 1 + 288

512 = 288 . 1 + 224

288 = 224 . 1 + 64

224 = 64 . 3 + 32

64 = 32 . 2 + 0

d = 32

 

Calcular los valores de dos incógnitas para que se cumpla la expresión d = ax + by

 

Se calcula el máximo común divisor de los coeficientes por el Algoritmo de Euclides de la división y se sitúan los restos desde el último hasta el primero que sean distintos de cero:

 

r = a - b . q

 

Se comienza desde la primera expresión y se sustituye b por su equivalente en la ecuación siguiente. A continuación pasamos a la siguiente ecuación y sustituimos a, y así sucesivamente. Cuando se llegue al final debe quedar:

 

d = m.c.d.(a, b) = ax + by

 

d = 322x + 406y

m.c.d.(322, 406)

322 = 406 . 0 + 322

406 = 322 . 1 + 84

322 = 84 . 3 + 70

84 = 70 . 1 + 14

70 = 14 . 5 + 0

1º Resto: 14 = 84 - 1 . 70

2º Resto: 70 = 322 - 3 . 84

3º Resto: 84 = 406 - 1 . 322

4º Resto: 322 = 322 - 0 . 406

Se toma el 1º Resto: 14 = 84 - 1 . 70

Se sustituye 70: 14 = 84 - 1 . (322 - 3 . 84) = -322 + 4 . 84

Se sustituye 84: 14 = -322 + 4 . (406 - 1 . 322) = -5 . 322 + 406 . 4

Se sustituye 322: 14 = -5 . (322 - 0 . 406) + 4 . 406 = -5 . 322 + 4 . 406

x = -5 | y = 4

 

Comprobar que un número es primo utilizando la criba de Erastóstenes

 

La criba de Erastóstenes dice que un número es primo si no es divisible por otro primo menor que la raíz cuadrada entera del primero. Primero se desarrolla la criba y a continuación se divide el número por cada uno de los primos contenidos en la criba.

 

n = 811

p < Raíz( 811 ) = 29

Criba: 2, 3, 5, 7, 11, 13, 17, 19, 23 = i

División: 29 MOD i # 0

811 sí es primo

 

Demostrar una propiedad por el Principio de Inducción

 

Sea S el conjunto de los valores. Según dicho principio, la propiedad se debe cumplir para el elemento 1 y para cualquier elemento k + 1 dado un k. Se presentan dos expresiones separadas con el signo igual, donde se les añade un término k + 1 a ambas y se resuelve por la segunda expresión.

 

Para todo n natural, 12 + 22 + ... + n2 = n . (n + 1) . (2n + 1) / 6

Primera propiedad: P(1) pertenece a S

12 = 1 . (1 + 1) . (2 . 1 + 1) / 6 = 1 . 2 . 3 / 6 = 6 / 6 = 1

Segunda propiedad: P(k) y P(k + 1) pertenecen a S

12 + 22 + ... + k2 + (k + 1)2 = k . (k + 1) . (2k + 1) / 6 + (k + 1)2 =

= k . (k + 1) . (2k + 1) + 6 . (k + 1)2 / 6 = (k + 1) . (2k2 + k + 6k + 6) / 6 =

= (k + 1) . (k + 2) . (2k + 3) / 6

Por lo tanto, se cumple la propiedad para todo natural

 

Hallar todas las soluciones de ecuaciones diofánticas del tipo ax + by = n

 

Primero se calcula el máximo común divisor de a y b, al que se le llamará d. Después se comprueba que d divide a n, para saber si la ecuación tiene solución. Si es así, existen a' y b' tales que: d = a' . a + b' . b

A continuación se averiguan a' y b' tomando la primera ecuación de los restos obtenidos del máximo común divisor de a y b, y sustituyendo los b y los a: r = a - b . q

Una solución de la ecuación sería: x0 = n . a' / d , y0 = n . b' / d

Y la solución general del sistema sería: { x0 + b . t / d , y0 - a . t / d } para todo t que sea entero.

 

28x + 36y = 44

28 = 36 . 0 + 28 => 3º Resto: 28 = 28 - 0 . 36

36 = 28 . 1 + 8 => 2º Resto: 8 = 36 - 1 . 28

28 = 8 . 3 + 4 => 1º Resto: 4 = 28 - 3 . 8

8 = 4 . 2 + 0 => Ultima división

m.c.d.(28, 36) = 4

Como 4 divide a 44 (44 / 4 = 11), la ecuación tiene solución 28a' + 36b' = 4

Se toma el 1º Resto: 4 = 28 - 3 . 8

Se sustituye 8: 4 = 28 - 3 . (36 - 1 . 28) = 4 . 28 + (-3) . 36

Se sustituye 28: 4 = 4 . (28 - 0 . 36) + (-3) . 36 = 4 . 28 + (-3) . 36

a' = 4 | b' = -3

Una solución sería: x0 = 44 . 4 / 4 = 44 , y0 = 44 . (-3) / 4 = -33

Y la solución general: { 44 + 36t / 4 , -33 - 28t / 4 } = { 44 + 9t , -33 - 7t }

 

Estudiar si un número es compuesto mediante el Algoritmo de factorización de Fermat

 

Un número es compuesto si es producto de dos números impares. Primero se hace la raíz cuadrada entera y se toma el valor entero mayor q y un intervalo:

 

[ q2 ... n + 1 / 2 )

 

Después se van haciendo operaciones q2 - n y se va incrementando q hasta obtener un número cuadrado. Entonces se sustituyen el q resultante y el número cuadrado en x2 e y2: x2 = q | y2 = número cuadrado | n = x2 - y2

Y a continuación, se despejan a y b: a = x + y | b = x - y | n = a . b

 

n = 22733

q >= Raíz( 22733 ) = 151

El intervalo será: [ 1512 ... 22733 + 1 / 2 ) = [ 1512 ... 11367 ) = 151 <= q < 11367

1512 - 22733 = 22801 - 22733 = 68 no es cuadrado

1522 - 22733 = 23104 - 22733 = 371 no es cuadrado

1532 - 22733 = 23409 - 22733 = 676 = 262 sí es cuadrado

x = 153 | y = 26

a = 153 + 26 = 179

b = 153 - 26 = 127

22733 = 179 . 127 sí es compuesto

 

Hallar todas las soluciones de ecuaciones de la forma x2 - y2 = n

 

La ecuación tiene solución si n se puede factorizar como producto de dos números de la misma paridad. Las soluciones tendrán la forma: x = a + b / 2 , y = a - b / 2 donde n = a . b , a = x + y y b = x - y. Primero se averiguan todos los factores primos y se divide el número entre cada uno de ellos. Se toman aquellas parejas con la misma paridad. Se aplican las fórmulas anteriores y se obtienen todas las soluciones, para a >= b.

 

x2 - y2 = 120

120 = 2 . 2 . 2 . 3 . 5 = 23 . 3 . 5

120 = 60 . 2 = 30 . 4 = 20 . 6 = 12 . 10 = 10 . 12 = 6 . 20 = 4 . 30 = 2 . 60

Se toman todas las parejas en las que a >= b

a

b

x = a + b / 2

y = a - b / 2

60

2

31

29

30

4

17

13

20

6

13

7

12

10

11

1

Las soluciones serán: { 31, 29 } , { 17, 13 } , { 13, 7 } y { 11, 1 }

 

Resolver una congruencia del tipo ax = b mód (m)

 

Una congruencia ax = b mód (m) es equivalente a una ecuación diofántica ax + mk = b. Se calcula el máximo común divisor de a y m, se le llama d y se comprueba que d divida a b. Por el Algoritmo de Euclides de la división se halla a' en: a' = b - m / a y se sustituye en: x0 = n . a' / d , x = x0 - a . t / d. Si x0 es negativo se halla una solución t hasta que x sea positivo.

 

2x = 6 mód (10)

Ecuación diofántica: 2x + 10k = 6

m.c.d.(2, 10) = 2

Se comprueba que 2 divide a 6

a' = 6 - 10 / 2 = -4

x0 = 6 . (-4) / 2 = -12

x = -12 - 10t / 2 = -12 - 5t

Una solución positiva es t = -3: x = -12 - 5 . (-3) = -12 + 15 = 3

La solución general es: x = 3 + 5k

 

Resolver un sistema de congruencias y presentar la ecuación general

 

Se comprueba que los módulos sean primos, es decir, que el máximo común divisor entre ellos sea uno. Si se cumple, la ecuación tendrá la forma: ax = bi mód (mi) donde las soluciones xi serán igual a bi. Se hace el producto de los módulos y se divide entre cada uno de ellos: Õ mi = m , donde ti = m / mi. Tendremos un nuevo sistema de ecuaciones con la forma general: tiyi = 1 mód (mi). Se averiguan las respectivas yi y se procede a averiguar el valor buscado: x0 = suma de i [ 1 ... n ] de xi . ti . yi .La ecuación general será: x = x0 + mk.

 

x = 2 mód (5)

2x = 1 mód (7)

3x = 4 mód (11)

m.c.d.(5, 7) = 1 || m.c.d.(7, 11) = 1 || m.c.d.(5, 11) = 1

x1 = 2 || x2 = 1 || x3 = 4 || m = 5 . 7 . 11 = 385

77y1 = 1 mód (5)

55y2 = 1 mód (7)

35y3 = 1 mód (11)

-75y1 = 0 mód (5)

-49y2 = 0 mód (7)

-33y3 = 0 mód (11)

2y1 = 1 mód (5)

6y2 = 1 mód (7)

2y3 = 1 mód (11)

y1 = 3 || y2 = 6 || y3 = 6

El valor buscado es: x0 = 2 . 77 . 3 + 1 . 55 . 6 + 4 . 35 . 6 = 462 + 330 + 840 = 1632

La ecuación general será: x = 1632 + 385k

 

Hallar el resto de dividir una potencia entre un número por el pequeño Teorema de Fermat

 

Se trata de hallar x en la siguiente expresión: an = x mód (p). Se comprueba que p sea primo y que no divida a la base de la potencia. Si se cumple, se aplica el teorema: ap-1 = 1 mód (p). Se desglosa el exponente de la potencia como una división entre p - 1 y se toma el resto como r1. Quedaría: n = (p - 1) . q + r1 || an = a(p-1).q . ar1 .Se halla el resto de la base sin exponente y se aplica en la siguiente fórmula a r2: a = y mód (p) || ap-1 = yp-1 mód (p) = r2 mód (p). Por último, sabiendo que x = r1 + r2, se aplica: an = x mód (p).

 

x = 11334291 MOD 7

11334291 = x mód (7)

Se comprueba que 7 es primo y no divide a 113

Como (p - 1) = 6: 34291 = 6 . 5715 + 1

11334291 = 1136.5715 + 113

113 = 1 mód (7) || 1136 = 16 mód (7) = 1 mód (7)

11334291 = (1 + 1) mód (7) = 2 mód (7)

x = 2

 

Resolver una ecuación mediante un cambio de base y efectuar la suma con otro número de la misma base

 

Comprobar si la incógnita está en el número o en la base. Si está en el número, se convierte el número contrario en decimal y se efectúa la división entre la base que sí se conoce. Si está en la base, se convierte el número contrario en decimal y se desglosa el número contrario en una ecuación de grado igual al número de dígitos menos uno. Se resuelve la ecuación y se toma el valor positivo. En general, para sumar dos números de la misma base, primero se convierten a decimal, se suman y se vuelven a dividir por la base anterior.

 

1245 = x9 || 132x = 3305 || 1245 + 3305

1245 = 4 . 50 + 2 . 51 + 1 . 52 = 4 + 10 + 25 = 3910

39 = 9 . 4 + 3 || 4 = 9 . 0 + 4 || 4 . 91 + 3 . 90 = 439 || x = 43

3305 = 0 . 50 + 3 . 51 + 3 . 52 = 0 + 15 + 75 = 9010

132x = 9010 || x2 + 3x + 2 = 90 || x = 8 , x = -11 || 1328 = 3305 || x = 8

1245 = 3910 || 3305 = 9010 || 39 + 90 = 12910

129 = 5 . 25 + 4 || 25 = 5 . 5 + 0 || 5 = 5 . 1 + 0 || 1 = 5 . 0 + 1

1 . 53 + 0 . 52 + 0 . 51 + 4 . 50 = 10045 || 12910 = 10045